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INTRODUCTION

Although similar visualization materials and techniques have been discussed in previous work by Hendricks
et al. (1997), we realized that printed frames, grabbed from videotapes of the flows in beds of packed spheres, failed
to reproduce what was visualized. Herein we describe the events associated with packed beds of twisted tapes, but
to fully appreciate the complexity of the flow fields, it becomes necessary to watch the videotape recording. How-
ever, the Full Flow Field Tracking (FFFT) method (Braun et al., 1988) can be applied to visualize and quantize the
flow patterns and fluid velocities within a packed bed or a porous medium.

Packed beds of twisted tapes may serve as an alternative to porous-media packed beds in heat pipe applications
in low- and high-body force fields, such as in space and gas turbine applications. Potentially, twisted tapes could
also function as reaction surfaces where uniformity of mixing is sought. In this study the test section assembly
simulated a canister of twisted tapes for heat, mass, and reaction exchange. An assembled cylinder would contain 6
to 10 such canisters in series. In turn, several cylinders would be bundled into an array. We tested only one simu-
lated canister, although for any practical application simulation of an entire cylinder and array would be necessary.
Power developed along the path and heat transfer and pressure drops downstream would modify the flows in the
upstream leading canister even to the point of choking the element. Choking is quite serious because the power
generation in a practical system is nearly constant and failure of the element becomes imminent.

ANALYSIS

Using twisted tapes (fig. 1, from Smithberg and Landis, 1964) is a well-known method for augmenting heat
transfer in tubes at the expense of pressure drop in single-phase flows (Hong and Bergles, 1976; Lopina and Bergles,
1969; Bergles, 1998). Yet at constant pump power, twisted-tape, swirl-flow heat transfer can be increased by 20%
over that of a straight tube (Lopina and Bergles, 1969). We will use these references as the starting point for
representing the ideal packed bed of N twisted tapes (cf figs. 1 and 2) and work toward a porous-media model. The
details are presented in appendix A.

For a single twisted tape in a tube the tangential fluid velocity is usually assumed to be linear with radial
position (rotating slug flow) or

v
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1( )



NASA/TM—2002-208914 2

v
UD

Ht
o

= π
( )2

where r is the radial position, D is the twisted-tape diameter, Ho is the twist through 360° (one full wave ), and U is
the bulk average axial velocity. (All symbols are defined in appendix B.)
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where W is the mass flow rate, ρ is the average fluid bulk density, t is the tape thickness, and w is the tape width, and
for t << D, wt → Dt.

Single Twisted Tape in Tube

From figure 2 of Smithberg and Landis (1964), the data closely follow equation (1), except at the wall and
centerline where vθ = 0, and nearly fit the following form:
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which is a close approximation to equation (1). For these data,1 ReD = 137 000, Ho/D = 3.62, D = 3.51 cm
(1.382 in.), and vθ,exp = 71.63 m/s (235 ft/s) at r = 1.65 cm (0.65 in.). At that point r/ro = 0.94, vθ = π(2r/D)(D/Ho)U,
or U = 82.3 m/s (270 ft/s). From equation (4)

Co = =

235

270
0 763

1 14 5
.

. ( )

Here vθ → U and even for this case neither an effective velocity (eq. (6) with Co = Ce) nor an effective flow path
(eq. (A12b)) is sufficient to account for the measured pressure drop increase in terms of f/fo.

For laminar flows with Reynolds numbers less than 150, Date (1974) determined that D/Ho corrections are not
required. However, for 150 < Re < 2000 (and for turbulent flows), D/Ho corrections are necessary. From the f/fo data
of Smithberg and Landis (1964), Ce → 3 with an equivalent velocity defined by using equation (2),
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The simple empirical form (eq. (6)) tends to group the turbulent friction data of Smithberg and Landis (1964)
at a higher Reynolds number and identifies (D/Ho)2 as a significant parameter for the analysis. However, there are
additional Reynolds number and surface roughness dependencies (Gambill and Bundy, 1962). For example, at

1The data point ReD = 137 000 with D/DH = 1.716 becomes ReDH
  = 79 837. Extrapolating the Ho/D = 3.62 locus may give

f/fo = 2.8, and this ratio may also be affected by roughness.
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Re = 25 000 the agreement of friction factors is good at high Ho/D, but at Re = 6000 the agreement is better at low
Ho/D but is still not that good. The surface roughness is not given and is assumed to be that of a commercial tube.

Gambill and Bundy (1962) correlate the isothermal, single-twisted-tape data of several investigators with
different surface roughness δ/De factors.
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and y is the number of tube diameters per 180° of twist (y = H/D or 2y = Ho/D).

d/De = 0 d/De = 0.00005 d/De = 0.0005

6000 25 000 80 000 6000 25 000 80 000 6000 25 000 80 000

Ho/D = 2y

fa = 4fo = 4(0.046/Re0.2) : fs from equation (A43)

22
10.3

4.34
3.62

1.12
1.31
1.97
2.23

1.05
1.13
1.41
1.51

1.02
1.06
1.20
1.25

1.12
1.34
2.04
2.32

1.06
1.15
1.48
1.61

1.03
1.08
1.25
1.32

1.19
1.52
2.61
3.04

1.16
1.42
2.31
2.66

1.13
1.36
2.10
2.40

Packed Bed of Twisted Tapes

In the packed-bed experiment described herein the tapes were not bounded by tube walls. They were assembled
into a uniform matrix of twisted tapes with the same twist direction, twist-to-diameter ratio H/Do, and thickness t.
The boundary conditions changed from those of a single twisted tape. The tangential velocity became zero at the
center of the twisted tape and at the tangent points of the packed bed of virtual tubes of diameter Do because the
velocity fields were counterrotating. The rotating velocity external to the confines of the virtual cylinders was
assumed to be small, thus permitting a local region of axial flow. As noted earlier, corrections for H/Do effects in
low-Reynolds-number flows are not required (Date, 1974). For H/Do > 3.6 and w → D, the tape lengths before and
after the twist do not differ substantially.

In packed beds the superficial velocity is related to the bed porosity by

u
Uo=
ε

( )7

where Uo is the empty or unpacked bed velocity and ε is related to the bed volume V as

ε = −1 8
V

V
solid

total
( )
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For the present case each of 48 twisted tapes was considered as encased in a virtual tube, where the tape width
w = 0.3234 cm (0.1273 in.) and the tape thickness t = 0.1275 cm  (0.0502 in.).

D w to = +( )2 2 0 5
4

.
( )A

Thus, Do = 0.348 cm (0.137 in.) and Ho = 5.503 cm (2.17 in.). For this geometry Ho/Do = 15.8 → H/Do = 7.9, or
three 360° twists in 16.5 cm (6.5 in.).

For the packed bed of 48 twisted tapes considered herein, the orientation of the twist angle was somewhat
irregular (figs. 2(b), (d), (e), and (f)); however, by using the prior relation for porosity and variations in t and w, the
estimated porosity range becomes (see measurements and estimates in appendix A)

0.59 <  < 0.63ε ( )9

with a mass flow range of

1 6 1 7 10. . ( )< <u A

W
oρ

where Ao is the cross section of the empty tube.

Parameters for Single Twisted Tape in Tube

The analysis and data of Smithberg and Landis (1964) were considered to provide insights into the effects of
twist H/D or H/Do and pressure drop. Reformulating the Ergun parameter YErgun (Ergun, 1952) in terms of the
Fanning friction factor (see appendix A) gives
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where

G Uo o= ρ ( )A15

At high Reynolds numbers

YErgun Constant for A→ → →0 014 1 25. ( )ε  and Re >> 2000

where 0.014 is the commercial rough-tube equivalent. In equation (A16), Lo represents the straight-line distance
between pressure taps. The twisted-tape length L varies little from Lo over the practical range of tapes. For laminar
flows the correlated pressure drops are weakly dependent on twist H/D or Ho/D, yet for turbulent flows the pressure
drop data are strongly dependent on twist. In most cases dp/dz → ∆P/L for single tapes in tubes. So in terms of
Reynolds number the packed-bed Reynolds parameter XErgun becomes
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and the generalized relation can be expressed as
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From extrapolating the data g2(H/D, ks) → 0.014 and represents a lower bound of the data as illustrated in figure 3
and labeled “single twisted tape.” To illustrate the dependency of the turbulent flow data on Ho/D, we normalized
the Ergun friction factor by using equation (6). The modified Ergun friction factor is shown in figure 4 as
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and tends to follow the simplified form

X Y XErgun Ergun Ergun A= +70 9 0 014 83. . ( )a

TEST FACILITY

The test facility consisted of an oil tunnel, flow system components, video equipment, a laser, lens systems, data
recorders, and a test configuration (fig. 5). The test section consisted of 48 twisted (spiral) Lucite tapes assembled
into a bundle and placed into a clear Lucite tube 2.54 cm (1 in.) in diameter. The tape bundle simulated, for
example, a system of catalytic reactive surfaces, heat transfer augmentation surfaces, or flows through strata of
porous media. The twisted tapes were made from clear, polished Lucite sheet 0.152 cm (0.06 in.) thick cut into strips
0.318 cm (0.125 in.) wide by 17.8 cm (7 in.) long (nominal dimensions; measurements are discussed in appendix A).
These strips were gripped 0.635 cm (1/4 in.) from each end and twisted with three complete twists (figs. 2(a), (d),
and (f)). Figure 2(b) is a cross section of the actual packed bed, and figure 2(c) illustrates an ideal packed bed. A
flow screen with 0.08-cm- (0.032-in.-) square mesh made of 0.023-cm- (0.009-in.-) diameter wire was placed across
the tube inlet and attached to a square support (figs. 2(d) and (e)). For Borda inlet flows the screen restrained the
axial movement of the twisted tapes and served as a screened orifice inlet when the test section was reversed. In the
latter case, the twisted tapes were restrained 0.95 cm (0.375 in.) downstream by the visualization mirror. Some
movement of the packed bed was noted. The movement would slightly disturb the inlet and exit flows but was not
expected to alter the developed flow field.

The assembly (fig. 2(d)) was then placed into a closed-cycle oil tunnel (fig. 5) with a square support fabricated
to retain the tube in the flow field and block the remaining tunnel cross section (152.4 cm by 7.62 cm by 7.62 cm; 60
in. by 3 in. by 3 in.). Both the upper wall and the viewing port walls of the tunnel were Lucite (fig. 5). The index of
refraction of the oil matched that of the Lucite, and magnesium oxide particles were used as flow tracers. The flow
field was visualized by using the Full Flow Field Tracking (FFFT) method (Braun et al., 1988). Laser light sheets
illuminated two-dimensional sections of the tunnel along the flow path. Transverse visualization was accomplished
by placing a mirror in the tunnel downstream of the 48-twisted-tape bundle and at approximately 45° to the flow
axis. A second mirror placed above the tunnel (not shown in fig. 5) projected the view to the television camera.
Cross tunnel traverses were accomplished by small rotations of the mirrors. These traverses provided insights into
the three-dimensional nature of the flow field.
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The coherent-beam, continuous-wave, argon-ion laser was directed by micrometric adjustable mirrors through
two cylindrical lenses positioned at 90° to each other and through the Lucite tunnel window and into the test section.
The light sheet was approximately 0.01 cm (0.004 in.) thick, and the flow was seeded with magnesium oxide flow
tracers. Micrometric adjustments controlled scanning of the light slices across the test section and provided a three-
dimensional visualization of the flow field, which was videotaped at 30 Hz.

EXPERIMENTAL RESULTS

Visualization

Figure 6 represents the axial flow field along the centerline of the packed bed of twisted tapes. Flows across the
inlet were markedly influenced by the twist and packing of the bed. At the inlet the vena contracta normally found at
the inlet of an open tube was limited to a minor region near the tube wall entrance (fig. 6(a)). Beyond this entrance
region the flow was rapidly entrained into minor spiral perturbations (Ho/Do = 15.8) within less than 0.1D. How-
ever, for flows near adjacent solid boundaries there is clear evidence of local spiral flows within the field of focus.
Flows in the boundary layer of each twisted tape tended to spiral as expected (fig. 6(b)). Thus, the flows tended to
follow typical boundary layer flow patterns: no slip at the surface and a region of viscous flow closely aligned with
the surface topology blending into a region of fully developed flows with minor perturbation of the streamlines. As
the pressure drop was increased, these regions became less distinct in that the boundary layers became thin and
difficult to visualize. There still persisted a region perturbed by the spiral nature of the surface, but it became less
distinct as the flow velocity increased.

By aligning the laser sheet transverse to the flow we obtained a circular cross section of the flow. The packed
bed of twisted tapes appeared as small, randomly oriented, rectangular blocks in the flow field (fig. 2(b)). There
appeared regions where the flows were jetting between adjacent blocks, regions where the flows were predomi-
nantly clockwise or counterclockwise, regions where the flows were upward or downward, and wall boundary layer
flows at both the “block” surfaces and the interfaces between the tube and the twisted tapes (fig. 7). Notably absent
were local vortex flows, with the possible exception of one configuration. Although jetting should produce vortices,
the three-dimensionality of the flow may have precluded observation. It appeared that engendered vorticity was
captured within the axial spiral flow field, although not readily visualized.

Packed Bed of Twisted Tapes

The pressure drop and flow data parameters in table 1 were plotted in figure 8. The errors in the difference in
static pressures upstream and downstream increased at lower Reynolds numbers, and those data should be consid-
ered suspect. It is evident that the Borda inlet configuration with a screen had a slightly higher flow resistance than
the orifice configuration with a screen and that the orifice configuration without a screen had the lowest resistance.
Consistent sets of parallel lines could be passed through each set of data in figure 8. Shown for reference are the
Ergun (1952) porous-media model and the Date (1974) single-twisted-tape model. In general, the data were lower
than the Ergun model over the range of data taken. The average fluid temperature was 22 ± 1 °C, the viscosity was
0.91 poise, and the density was 0.9 g/cm3. A suggested general form for N twisted tapes in a tube, following
equation (A83), is

X Y XErgun Ergun Ergun A= +45 0 009 85. ( )a

which is considerably below that suggested for flows in porous media

X Y XErgun Ergun Ergun A= +150 1 75 84. ( )

suggesting significantly less flow resistance for the packed bed of twisted tapes.
For flows through packed fibrous beds the resistance for parallel fibers is about one-third that for perpendicular

fibers
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Y X k Y XErgun Ergun parallel Ergun Ergun perpendicular
A( ) = = ( )36

1

3
99( )

These expressions agree with those presented by Hersh and Walker (1980), but an average of the two forms more
closely approximates the data of Sullivan (1941)

X YErgun Ergun A= + =46 6 58 8

2
52 7 109

. .
. ( )

and is similar to the reported (laminar) data (table 1 and eq. (A85)).

Single Twisted Tape

Parameters XErgun and YErgun from the selected interpolated data of Date (1974), Koch (1958), Gambill and
Bundy (1962), and Smithberg and Landis (1964) are plotted in figure 3 for the range 0.56 < Ho/D < ∞. The depen-
dency on Ho/D is evident and is bound by the porous-flow loci (eq. (A84)) to that of a single twisted tape at high
Reynolds numbers (eq. (A83)). This conclusion is based on the data of Koch (1958), which were taken from figure 7
of Smithberg and Landis (1964).

The results of Sparrow and Haji-Sheikh (1966) for laminar flows can be expressed as (see page 17)

Y XErgun Ergun A a= 70 94 39. ( )

Also plotted in figure 3 are the data for 48 twisted tapes in a tube along with equation (A84).
Figures 9 and 10 represent the loci of 48 twisted tapes in a tube, a single twisted tape in a tube, porous-media

flows, and interpolated turbulent flow data for a single twisted tape in a tube corrected for swirl velocity.

VIDEOTAPE RECORDING

The complexity of the flow field, whether virtual or experimental, became vivid through the videotape record-
ing, which is included as .avi and .mov files on the supplement CD in the printed version of this report. Visualiza-
tion of the flow field reveals flow threads, wakes, stagnation zones, and the influence of the twisted-tape interfaces.
The flow threads can be observed during a scan of the flow field from the front to rear lateral walls. These flow
threads weave through the packed array of twisted tapes in the bulk flow direction. Details of the flow boundary
layer close to the wall and progressing through the packed bed to the opposite wall are revealed. The video can also
be used to determine quantitative experimental information, such as the flow velocities, by using the FFFT tech-
nique (Braun et al., 1988).

Click here to play movie
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SUMMARY OF RESULTS

The flow experiment consisted of three principal elements: an oil tunnel 7.6 cm by 7.6 cm (3 in. by 3 in.) in
cross section, a cylindrical tube containing the packed bed of twisted tapes in an arbitrary array, and a flow charac-
terization methodology, Full Flow Field Tracking (FFFT). The indices of refraction of the oil and the test matrix of
twisted tapes were closely matched, and the flow was seeded with magnesium oxide particles. Planar laser light
provided a two-dimensional projection of the flow field, and a traverse simulated a three-dimensional image of the
entire flow field. Flows were observed near the inlet of the cylindrical tube housing the bundled array of twisted
tapes, at the interface between the tube wall and the twisted tapes, and within the bundle of twisted tapes.

The flow field was three-dimensional and most complex to describe. The most prominent finding was flow
threads. The axial flow appeared to spiral along the twisted tapes within the confines of a virtual distorted cylindrical
boundary. The flow field appeared to be simulated by a packed array of very thin virtual cylinders, with the
exception of the spiral effect due to the twist. The effects of random packing and bed voids created vortices and
disrupted the laminar flow but minimized the entrance effects of the unpacked tube.

The results of several investigators for flows in geometries with a single twisted tape were analyzed. These
results are related to the Ergun model in appendix A. (Symbols are defined in appendix B, and a comprehensive data
table is given in table 1.) The single-twisted-tape results of Smithberg and Landis (1964) have been used to guide
the analysis. The data for 48 twisted tapes in a tube were correlated by using the Ergun model for flows in porous
media. The pressure drop and flow data for the three geometric configurations (Borda and orifice inlets with
downstream restraining screen and orifice inlet without screen) have distinct flow characteristics differing up to
13%. The averages for the combined data sets were lower than the Ergun model by a factor of 3 for the packed bed
of 48 twisted tapes in a tube and by a factor of nearly 1.6 for a single twisted tape in a tube. These results suggest a
lower flow resistance for a packed bed of 48 twisted tapes in a tube than for either porous-media flows or single-
twisted-tape flows. Further investigations including different geometric configurations and computational fluid
dynamics analysis are suggested.
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APPENDIX A

RESULTS OF SEVERAL INVESTIGATORS SCALED TO ERGUN MODEL

Because we really do not know how to correlate the data between a single twisted tape and multiple twisted
tapes in a cylinder or tube (figs. 1 and 2), we will begin with some familiar definitions of friction factor and
Reynolds numbers and arrive at the form similar to that developed by Ergun for porous-media flows.

∆P
f u L

DH
= 










( )4

2
1

2ρ
general Fanning friction factor A( )

Re = ρ
µ

uDH

and for now, let ρ = Constant and Cf = 4f, as used, for example, by Sparrow and Haji-Sheikh (1966), Hong and
Bergles (1976), and Gambill and Bundy (1962).

Now let us define some packed-bed parameters. Let the average or superficial velocity within a packed bed of
one or more twisted tapes be

u
U Uo= =
ε ε

( )A2

where U is the velocity in the tube without tapes. The bed porosity is defined as

ε
π

= −1

4

32
Ntw

D
( )A

where N is the number of twisted tapes, t their thickness, w their width, and Do the virtual twisted-tape diameter
(fig. 2(c)).

D w to = +( )2 2 0 5
4

.
( )A

We can now define the characteristic length of the packed bed in terms of sphere diameter. Note that DH =
4A/S, where A is the cross section of the flow area and S the wetted perimeter. For a tube DH = Dtube and for a
uniform bed of spheres 6Vs/As = 6/av = Dp → Dsphere (Bird et al., 1960). This factor of 6:4 or 3/2 will become a
scaling parameter for the Ergun relation. The characteristic length of the packed bed is

D
R

a
H

h4
5= = ε

( )A

where Rh is the ratio of the bed cross section available for flow to the wetted perimeter, which is equal to the ratio of
the volume available for flow to the total wetted volume and is equal to the bed porosity divided by the ratio of the
wetted surface to the bed volume. The specific surface area is

a
a

Dv
p

=
−

=
1

6
6

ε
( )A
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where av is equal to the ratio of the total sphere surface to its volume and is equal to the ratio of the wetted surface to
the solid volume.

Combining equations (A5) and (A6) gives the characteristic length of the packed bed as

D
R

DH
h

p

4 6 1
7= =

−( )
ε
ε

( )A

In terms of one or more of N twisted tapes contained within a cylinder or tube of diameter D, and with equation
(A3),

D

D
Ntw

D N t w

D
N t w

D

H =
−








+ +( )
=

+ +( )

4
4

2 1
2

8

2π

π
ε

π

( )A

When equation (A8) is substituted into equation (A7), Dp becomes

D

D

N t w

D

p =
−( )

+ +( )

3

2
1

1
2

9
ε

π

( )A

Note that in figure 2(c) the dark shaded areas A, B, and C are within the bounds defined by the twisted-tape
width w and thickness t, the tri-circular loci with radii of Do/2, and the triangle with vertices 1,2,3. The area
B a c+ + =˜ ˜ /wt 4 , the area C c b− + =˜ /wt 4 , and the area A – a – b = 0. Therefore, the dark shaded area (solid area
of the tape) within the triangle is wt/2. Continuing with triangle 4-2-1, C c b1 1− + =˜ /1 4wt , B c a1 1+ + =˜ /wt 4 ,
and A b a1 1− − =˜ ˜ 0 . Similarly, for triangle 2-5-3, C c b2 − + =˜ ˜ /2 4wt , B c a2 + + =˜ /2 4wt , and A2 – b2 – a2 = 0.
Summing these areas gives the total solid twisted-tape area within the confines of the hexagon. Extending these
results provides a generalized form for N twisted tapes within the confines of a hexagonal space that approximates
that of a circumscribed cylinder or tube. This generalized form is an ideal model for packed beds that is expressed
only in terms of tape width and thickness.

εmodel =
−

= −
+

1 2
2 2

1

2

3

2

1
2

3
102 2

t w

D D

tw

t w
o o

( )A

and for w = 2t (see also the section Some Sample Calculations at the end of this appendix)

ε = − =1
4

5 3
0 538.

Comparing the model to the experiment where 48 twisted tapes with average width and thickness 〈w〉 = 0.3234 cm
(0.1273 in.) and 〈t〉 = 0.1275 cm (0.0502 in.) were contained in a 2.54-cm- (1.0-in.-) diameter tube gives an average
porosity, from equation (A3),

ε
π πexp

( . )( . )

( . )
. ( )= − = − =1

3

2
1

192 0 3234 0 1275

2 54
0 61 112 A
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which indicates that the experimental test tube was well packed. For a single twisted tape in a tube (Smithberg and
Landis, 1964), where t = 0.0559 cm (0.022 in.), w → Do = 3.51 cm (1.382 in.),

ε
πSmithberg Landis A- = − =1
4

0 9797 12
t

Do
. ( )

A problem arises because this formulation is independent of twist H/D. From structural mechanics the twisting
of tapes is considered to follow linear mechanics with little change in length, unless plastic deformation with
subsequent annealing takes place. As a result of this assumption the bed porosity is not a function of H. However,
the flow path is a function of twist H/D, and consequently, the characteristic length must be modified to reflect H.
The spiral path is defined in terms of the parameter ϕ as

x r y r Z h= = =cos ; sin ;ϕ ϕ ϕ (A12a)

and the path-length amplification ratio becomes, for the number of 2π twists nt,

L

Z

n r

Z

Z

n ro

t

o

o

t
= +



















2
1

2

2 0 5
π

π

.

(A12b)

For very large H/D (slow spiral), nt → 1 and L/Zo → 1. For very small H/D (rapid spiral), nt → M >> 1 and L/Zo →
2πMr/Zo. This amplification is not strong enough to account for the pressure drop increases due to the twist.

Models for Single-Twisted-Tape-in-Tube Analogy

Smithberg and Landis (1964).—Smithberg and Landis (1964) used the local average velocity (superficial bed
velocity) in their correlations. Consequently, their friction factor and Reynolds number relations can be scaled
directly in terms of the packed-bed parameters YErgun and XErgun. Substituting equations (A2), (A7), and (A11) into
equation (A1) gives the pressure drop parameter YErgun in terms of the Darcy friction factor as

4 4
0 5

1

3 12 2

3
f f

P

u

D

L

P

G

D

L
H

o o

p

o
= =













=





 −










Smithberg Landis-

∆ ∆
. ρ

ρ ε
ε

(A13)

f YSmithberg Landis Ergun A- = 1

3
14( )

where

G Uo o= ρ ( )A15

Y
P

G

D

Lo

p

o
Ergun A=






 −












ρ ε
ε

∆
2

3

1
16( )

Here Lo represents the straight-line distance between pressure taps. The twisted-tape length L varies little from Lo
over the practical range of tapes, and for laminar flows the correlated pressure drops are weakly dependent on twist
H/D. However, for turbulent flows the pressure drop data are strongly twist dependent. In most cases dp/dz → ∆P/L
for single tapes in tubes. Therefore, in terms of Reynolds number the packed-bed Reynolds parameter XErgun
becomes
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Re
( )

( )Smithberg-Landis Ergun A=
−









 =2

3 1

2

3
17

ε
ε µ

εG D
Xo p

where

X
G Do p

Ergun A=
−( )

( )
1

18
ε µ

f Y XRe ( )( ) =Smithberg Landis Ergun Ergun A-
2

9
19

ε

For turbulent flows the YErgunXErgun product is dependent on both Re and H/D. Smithberg and Landis (1964)
provide a simple expression for the Fanning friction factor. It is important to recall that herein we used H/D = 180°
twist, whereas Smithberg and Landis used Ho/D = 360° twist, where H and Ho are measured along the axis parallel
to the tube centerline,2

H

D

H

D

H

D
o = 



 = 



Smithberg Landis

A
-

2 20( )

f
H

D
o n

Smithberg Landis A- = + −

















−
−0 046 2 1 0 5 21

1 2

. . . Re ( )
.

where

 n
H

D
o= + 

















−
0 2 1 1 7

0 5

. .
.

Adjusting the constant 2.1 and the exponent –1.2 slightly gives a better fit to the data, and the normalized form
becomes

g
H

D

f

f

H

Do
o

o

o
Ho D











=






= + −

















− −

Smithberg Landis
Smithberg Landis (A22)

-
-1 105

2
1

1 15 0 34. .
Re

where fo = 0.046Re–0.2. In terms of equation (A21), equation (A19) becomes

Y X g
H

D
f g

H

Do
o

o o
o

Ergun Ergun Smithberg Landis Smithberg Landis (A23)= 










( ) = 











9

2

0 207 0 8

ε ε
Re

.
Re .

- -

After substituting equation (A17), equation (A23) becomes

Y X g
H

D
XErgun Ergun Ergun (A24)= 











0 15 0 8 0 8. . .ε

2Yet the number of 180° twists will be twice the number of 360° twists for a fixed tube length (i.e., n180° twists = 2n360° twists),
and some authors use twist count rather than measured values of H and Ho.
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where

g
H

D

H

D

X H D












= + −























− −
1 105

4
1 2

3

1 15 0 34 2. .

ε Ergun

At very high Reynolds numbers surface roughness will promote eddy bursts near the walls and separation effects as
the flow attempts to track the twisted tape, implying that (figs. 8 and 10)

YErgun Constant for A→ → →0 014 1 25. ( )ε  and Re >> 2000

where 0.014 is the commercial rough-tube equivalent (see eqs. (A54) and (A55)). For two-phase flows excessive
vapor generation, or holdup, would be anticipated.

Hong and Bergles (1976).—A similar set of scaling parameters can be developed for the data of Hong and
Bergles (1976):

Re ( )Hong Bergles- = =






















ρ
µ µ ε
uD G D

D

Do p p A26

From equation (A8) with N = 1 and (w + t) → D,

D

D

t w

D

p
=

+ +

−

















→
+

−

















→
−

2

3

1 2

1

2

3

1
2

1

1 09

1
27π

ε
π
ε ε

.
( )A

Re
.

( )Hong Bergles Ergun- → 1 09
28

ε
X A

C
P

u

D

L

P

G

D

L

D

D
Y

t w

d Yf
o

p

p
,

.
( )Hong Bergles Ergun Ergun- =











 =




















 =

+ +















→
+















∆ ∆
0 5

2 2
2

3

1 2 4

3

1
2

292 2
2

ρ
ρ ε π

ε
π

ε
A

where Lo/L → 1. With t = 0.046 cm, Do = 1.02 cm, and w → Do.

ε πHong Bergles- = − =1
0 046

1 02
4

0 943 30
.

.
. ( )A

Equation (A10) would give 0.945, so w → Do is a good approximation.

C Yf ,Hong Bergles Ergun- = 2 314 31. ( )A

For laminar flows in a half-tube configuration, equivalent to a tube with a single twisted tape,
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C Y Xf Re . ( )( ) =
+















=
Hong Bergles Ergun Ergun-

8

9

1
2

183 6 32

2

π
ε

A

Y XErgun Ergun = 68 6 33. ( )A

We will later show the relation to the work of Sparrow and Haji-Sheikh (1966) as

C
D

D
Cf

H
fRe . Re ( )( ) = = 



 ( )

Hong Bergles Sparrow Haji Sheikh- – -
183 6 34

2
A

where DH/D = 0.5682 is found from equation (A8) by using the geometry of Hong and Bergles (1976), where t  =
0.046 cm, w = 0.97 cm → Do, D = 1.02 cm, and (DH/D)2 → 0.334.

Date (1974).—For the work of Date (1974) the scaling factors become, for (t + w) → D,

Re ( )Date Ergun= =






















=
+















ρ
µ

ρ
µ ε

π
ε

ud U D

D

D
Xo p p 2

3

1
2

35A

f
dp

dz

D

u

dp

dz

D

U

D

D
Yp

o p
Date Ergun= 










= 


















 =

+















1

2

1

2

1

3

1
2

362 2
2

ρ ρ
ε π

ε
( )A

f Y XRe ( )( ) =
+















Date Ergun Ergun
2

9

1
2

37

2

π
ε

A

For laminar flow in the half-tube configuration, or for a tube with a single twisted tape, and ε→1 (see Weigand,
1948, and eq. (A76))

fDate DateRe . ( )= 42 19 38A

Y XErgun Ergun = 70 9 39. ( )A

which is in good agreement with equation (A33). For ε = 0.934, YErgunXErgun = 61.8; and for ε = 0.9797,
YErgunXErgun = 68.0.

For ReDate < 150, tape twist H/D has little influence on the Fanning friction factor. For 150 < ReDate < 1000,

f f fDate Date half tube Date= +– - ∆
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f f
f

f

f

f
X

Y X

Re Re
Re

Re
.

Re

.

.

( ) = +




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= +



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































+















Date Date half tube Date
Date Date

Date half tube Date

Date Date

Date
Ergun

Ergun

– -
– -

1 42 19 1
42 19

1
2

3

1
2

42 19

2

9

1
2 2

∆ ∆

∆ π
ε

π
ε ErgunErgun (A40)

and for ε → 1

Y X f XErgun Ergun Date Ergun (A41)= +( )70 9 1 0 026. . ∆

and for 150 < ReDate < 1000

∆f
D

H

D

HDate
Date Date

Date (A41a)= 



 + 




















0 088 0 1

150

0 1

10. . log
Re.

For ReDate > 1000, the Smithberg and Landis (1964) expression, or modified expression, for the Fanning friction
factor can be converted to fDate. Recall equation (A21):

f
H

D
o n

Smithberg Landis A- = + −

















−
−0 046 2 1 0 5 21

1 2

. . . Re ( )
.

where

n
H

D
o= + 

















−
0 2 1 1 7

0 5

. .
.

and the conversion for ReDate > 1000 follows as

f
D

D

H

DH

mRe . . . Re
.

( ) =






+ 



 −























−
−

Date
Date

(A42)
2 1 2

10 046 2 1
2

0 5

where

m
H

D
= + 



























−

0 2 1 1 7 2
0 5

. .
.

Date

The D/DH = 1.66 given by Date (1974) should be nearly 1.6366. Date gives no values for tape width or thickness,
and estimates of ε will give a range 61 < (YErgunXErgun)Date < 71 for laminar flow in a half-tube or in a tube with a
single twisted tape. Also note that Date’s calculations underpredict turbulent friction factor data by 30%.

Gambill and Bundy (1962) and Gambill et al. (1961) evaluate swirl-flow heat transfer along with isothermal
data on friction coefficients. The relation given
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(A43b)
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D
tD

D t De =
−








− +

4
4

2 2
43

2π

π
( )A c

and where y is the number of tube diameters per 180° of twist (2ntD), De the equivalent or hydraulic diameter (over
the practical range 5/4 < y < ∞, De → DH,), δ the surface roughness, fs the Darcy swirl friction factor, and fo the
Fanning friction factor. The reduction of the analysis parameters to Ergun parameters takes the same form as that of
Sparrow and Haji-Sheikh (1966):
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 
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= → >ρ ε
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3 1
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.
Ergun where Constant (A44)

Ree
o pU D
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
 −
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







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ε

ε
ε µ

2

3 1

2

3 Ergun (A45)

However, the data presented in figure 2 of Gambill and Bundy (1962) follow the parameters of Hong and Bergles
(1976):

Re Re
.

.= → →Hong Bergles Ergun Ergun (A2 a)-
1 09

1 12 8
ε

X X

f
P

u

D

L
Ci f=











 =∆

0 5
92.

,ρ Hong Bergles (A2 a)-

f C Yi f= =
,

.
Hong Bergles Ergun (A a)

-
2 314 31

Equation (A43) represents the best fit of a large data set from several investigations, yet at Ree = 10 000 and δ/D =
6×10–4 the ratio of friction factor data at y = 1.12 to those at y = 0.28 (an unusually tight twist) is nearly 17. From
equation (A43) the ratio is 6. Although this difference has not been resolved, it is important to recognize that at a
given Reynolds number and value of y (noting that H/D = y/D) the effect of surface roughness is very important
because both increase the friction factor.

Sparrow and Haji-Sheikh (1966).—For the work of Sparrow and Haji-Sheikh (1966) on flow and heat transfer
in an arbitrarily shaped tube, the scaling factors for the half-tube configuration become
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After substituting equations (A2) and (A7) and recalling our assertion that dp/dz → ∆P/L, equation (A1) becomes
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Y XErgun Ergun A a= 70 94 39. ( )

Sparrow and Haji-Sheikh (1966) also estimate entrance losses as
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







∫2

1
2

bar bar

and for the half-tube configuration

K → 1 463. (A48)

The agreement between Sparrow and Haji-Sheikh (1966) and Date (1974) for the half-tube or single-twisted-tape
configuration is not surprising as they are within 1% of the values of Weigand (1948), which we discuss in the
section Torsion–laminar flow analogy.

Bird et al. (1960).—For laminar flow in a tube (limit ε→1), Bird et al. (1960) give the average flow velocity as

u
PR

L
h= ∆ 2

2µ
(A49)

Substituting equations (A2) and (A7) and multiplying both sides by ρ2Uo give

G
P

D
G

L

L

Lo p
o

o

o2
3

2
20 5

36 1
0=

−( )





















.

ρ ε
ε

∆
(A5 )
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1 0 5
36

1=

















.

L

L
Y Xo

Ergun Ergun (A5 )

Y X
L

L

L

Lo o
Ergun Ergun = →72 1 2where (A5 )

which is in good agreement with the results of Date (1974), Sparrow and Haji-Sheikh (1966), Hong and Bergles
(1976), and Weigand (1948) for laminar flows in the half-tube or single-twisted-tape configuration.

From data for flows in packed beds Bird et al. (1960) give 2L/Lo = 25/6, resulting in the Blake-Kozeny equa-
tion. Kaviany (1995) gives 2L/Lo = 5. From these results we anticipate that the bed correction factor for laminar
flows in a configuration with N twisted tapes in a tube will be largely independent of the twist for

Re /Date Ergun Ergunwhere (A5 )=
+















< < →2

3

1
2

150 400 3 3π
ε

εX X  and 1

with some correction for flow path length 2L/Lo. However, the correction factor will not be as strong as that for a
randomly packed bed, where XErgun < 10 is considered laminar.

At high Reynolds numbers the results of Smithberg and Landis (1964) show significant effects of twist Ho/D as
discussed earlier (eq. (A21)). At even higher Reynolds numbers the surface roughness will promote both eddy bursts
near the walls and separation effects. For commercially rough tubes (Schlichting, 1955) and in the limit ε→1 (i.e.,
without a twisted tape in the tube)

100 400
2

3

400

3

2

3
1 27 4λ ε

Re .( ) = 



 ≈ =Nikuradse Ergun Ergun Ergun (A5 ) (1933) f X Y X

YErgun Constant for (A5 )→ → →0 014 1 5. ε

and 0.014 is the commercial rough-tube equivalent. From the data of Smithberg and Landis (1964) the trends for the
single-twisted-tape or half-tube configuration, using DH, appear to approach equation (A55).

Torsion–laminar flow analogy.—Weigand (1948) provides solutions to the problem of torsion in prismatic
members where the function f(x,y) satisfies (see also fig. 2(g))

∇ = −2 1 6f (A5 )

with fbar = 0 on the boundary of the cross section. This function gives the torsion constant Jd for a member of cross
section A, where

J fdAd = ∫∫4 7(A5 )

The analogy between fully developed flow in a tube and torsional problems starts with the Navier-Stokes
equations

Du

Dt
F p u= − ∇ + ∇/ ρ ν 2 8(A5 )
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assuming steady flow where inertia and body forces are small and ∇p = Constant. It then follows that

∇ = −2 1 9u (A5 )

with ubar = 0 on the boundary where

u
udA

Abar (A )= ∫∫
60

and

u
dp

dz

R r

R
C

r

Ro= − − 

















= − 

















2 2 2

4
1 1 61

µ
(A )

The equations describing this type of flow are in a form similar to those for torsion in a prismatic bar as
described by Weigand (1948) and pointed out by K.C. Cheng in a discussion to the work of Sparrow and Haji-
Sheikh (1966). This leads to

R

C
u f

o

2
2 2

4
1 62∇ = − = ∇ (A )

f
R

C u u

dp

dz
o=







=

−















−
2

1

4
63

µ
(A )

u
udA

A
f

dp

dz dA

A

J
dp

dz Ad
bar (A )= =

−















=

−















∫∫ ∫∫ −
µ µ4

641

Now the coefficient of friction and Reynolds number are related as

C

dp

dz
D

u

u D
dp

dz
D

uf

e
e

e
Re

. .
=

−





























=

−





0 5 0 5
652

2

ρ
ρ

µ µbar

bar

bar
(A )

Substituting for ubar for fully developed laminar flows, where DH = De, gives

C
AD

Jf
e

d
Re = 8

66
2

(A )

Substituting for
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D
A

e = 4
67

Perimeter
(A )

gives

C
A

J
f

d

Re =
( )

128
68

3

2Perimeter
(A )

where

A R= − −











π α α
π

2 1
2 2

2
69

sin
(A )

Perimeter (A )= − −





2 1 70π α α
π

R
sin

For circular tubes (χ = π – (α = 0) → π) Weigand (1948) gives in his table IV

κ π= = =J

R
d
4 1 571

2
71. (A )

and

C Re =  64f (A )72

For semicircular tubes [χ = π – (α = π/2) → π/2] Weigand (1948) gives in his table IV

κ = =J

R
d
4 0 298 71. (A a)

C

R

J
f

dRe .=
+





=16

1
2

62 97 73

4

2π

π

(A )

Cf Re  =  63.06
Sparrow–Haji-Sheikh (1966)

( ) (A a)46

Although the CfRe values of Sparrow and Haji-Sheikh (1966) are monotone with α, those of Weigand (1948) are
not. However, all are well represented by

C
A

J
f

d

Re = =
( )

63
128

74
3

2Perimeter
(A )

and would be a good engineering approximation for laminar flows in tubes of various cross sections (e.g., semicircu-
lar). For Date’s work, using the preceding relations,
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C f
D

D

D

D
f

D

Df i
e

i
e

i i
eRe Re Re= 









 = 



 =4 4 63 75

2

(A )

and for the twisted tape under the following conditions:

y
H

D

D

De
= → ∞ = = +; ;α π

π2
1

2

fi iRe .= 42 19 76(A )

Generalization.—For tubes with single twisted tapes

X Y g
H

D
X

n

Ergun Ergun Ergun (A )= + 

















−
70 9

2

3
771

1
.

ε

where from Smithberg and Landis (1964), for XErgun > 2600/3,

g
H

D

H

D1

1 2
0 046 2 1

2
0 5 78











= + −





−
. . .

.
(A )

and

n
H

D
= + 

















−
0 2 1 1 7

2 0 5
. .

.

and for 400 < 3XErgun < 2600

g
H

D

D

H

D

H

X
1

0 1

100 088 0 1
2

3

1
2

150











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
















+

































. . log
.

π
ε

Ergun (A78a)

n = 1

Some consolidation in the turbulent flow regime follows from Smithberg and Landis (1964):

f

f H

D
H D o→∞

= +0 9
6 9

.
.

(A79)

where

fH D/ .
.

Re
→∞ = 0 046

0 2 (A79 )a
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and is thought of as the nonideal flow path length L for a particle to travel a bed or tube length of (Lo)H/D→∞. Thus,
g1(H/D) can be modified as

g
H

D H

D













≈ +0 9
6 9
2 0.

.
(A8 )

Lopina and Bergles (1969).—Of equal interest is the simple relation given by Lopina and Bergles (1969) for

turbulent flows in smooth tubes (±20%) for water and air for 5×103 < Re < 4.5×105 and 3  < H/D < 85 :

f

f

H

Do
= 





−
2 75 1

0 406
.

.
(A8 )

where fo is the isothermal friction factor for an empty tube, fo = 0.046/Re0.2. Reducing the results of Lopina and
Bergles (1969), with equation (A9), gives

f
PD

LG

GD D

D
i i p

p
Re = 










−
−











∆ ρ
µ

ε
ε

ε
ε

ε
ε2

1

1
12

2

(A8 )a

f
f

f
X Y

H

Do
o

Re .
.





= 





+



−

Ergun Ergun (A8 )0 61
1

2

1
0 406

2

3
π

ε
b

where

f Y=
+















1
2

3
13

π
ε Ergun (A8 )c

Re = +





2

3
1

2
1

π
XErgun d(A8 )

The resulting fit to the data is lower than the data of Smithberg and Landis (1964) by about 10% for H/D = 2.48. So
the agreement can be good and the simplicity may be of merit for a limited Reynolds number range.

We also note that for large values of XErgun the data will become independent of XErgun as equivalent surface
roughness (ks ≅ δ/D) plays a role. Thus, for large XErgun for a given geometry

Y g
H

D
ksErgun (A8 )= 











=2 2, Constant

or in generalized terms

X Y g
H

D
k XsErgun Ergun Ergun A= + 











70 9 832. , ( )
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and from extrapolating the data

X Y XErgun Ergun Ergun A= +70 9 0 014 83. . ( )a

Porous Media Flows and N Twisted Tapes

For porous-media flows Ergun (1952) combined the turbulent and laminar data, noting that at high Reynolds
numbers the friction factor approached a constant as is consistent with flow in a fully roughened tube (ks > 0). The
result was a linear sum of the Kozeny and Burke-Plummer equations, and as illustrated in Bird et al. (1960) the
generalized form may be written

X Y XErgun Ergun Ergun A= +150 1 75 84. ( )

And if the Ergun data were for a single insert, and following the development on page 199 of Bird et al. (1960),

ρ ρ ε
ε

ρ
µ ε

2 2
3

1

1

72 1
V P

D

L

V D
o

p o p=




 −










 −( )









∆

X YErgun Ergun = 72

which nearly coincides with the 70.9 of Lopina and Bergles (1969) in equation (A83), indicating that friction factors
for flows in tubes with multiple twisted tapes should be much higher than measurements are showing.

For tubes with N twisted tapes the laminar data are below, yet parallel to, the XErgunYErgun relation for flows in
porous media. From the data in table 1 (which may yet require Prandtl number or viscosity corrections),

X YErgun Ergun (A8 )= =Constant ˙ 45 5

with a “suggested general form” for N twisted tapes in a tube following equation (A83), which appears as

X Y XErgun Ergun Ergun A= +45 0 009 85. ( )a

From equations (A93) and (A95) for parallel flows in cylindrical fibrous materials, with ε = 0.61 for a 48-twisted-
tape cylindrical bundle,

X Y kErgun Ergun A= =36 46 6 85. ( )b

suggesting that pressure losses in the twisted-tape bundles are less than in other porous-media flows.
The combination of implied losses and those of, for example, cotton fibers, suggests a flow vortex structure that

impedes the passage of fluids more than hair or glass fibers do. This structure does not suggest a direct relation to
either heat or mass transfer. These implications remain to be investigated.

Fibrous Bulk Materials

The work of Fowler and Hertel (1940) for flows through wads (e.g., wool, glass wool, cotton, rayon, kapok)
provides a solution:

G
k dp

dxo
o=










 −( )







−



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γ
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τ
σ

ε
ε2 1

86
2 3

2

2
( )A
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where 0.18 < k < 0.2, γoP = ρ, and the specific surface area av = τ/σ equals the ratio of the element volume τ to the
element surface σ. Equation (A86) can be rearranged to the Ergun form:

1 1

1
87

2 3

2

2

2X G D
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o p o p pErgun
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where
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Ergun A=






 −












ρ ε
ε

∆
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1
16( )

and

D
ap

v
= =6

6 88
τ
σ

( )A

For k = 0.2

Y XErgun Ergun A= 180 89( )

as also recommended by Kaviany (1995). For k = 0.18 as recommended by Fowler and Hertel (1940)

Y XErgun Ergun A= 200 90( )

The work of Sullivan (1942) for parallel fibers illustrates a distinct departure from the relation YErgunXErgun =
Constant. Sullivan’s relations are similar to those of Fowler and Hertel (1940) and follow the same reduction to the
Ergun form:

D
a Sp

v o
= =6 6

91( )A

1 1

1
922 2
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2X G D k S D
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L
Go p o o p

p

oErgun
A= −( ) =
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





 −




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ε µ ς ε

ε
ρ∆ ( )

Y X kErgun Ergun A= 36 93( )

where the units of Sullivan (1942) are in the cgs system (dyne, g, cm, s).

k
ko=
ς

( )A94

and ρ ≡ (sin2φ)avg, where φ is the angle between the interface normal and the microscopic flow. For flows with
parallel “cylindrical” fibers and ζ→1
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k koς

ε

ε
→ =

−
+3

1 02
0 8 95

.
. ( )A

For flows with parallel cotton fibers and ε < 0.85

k koς → = 2 5 96. ( )A

For ε > 0.85, kζ→ko tends to follow ko,parallel.
The YErgunXErgun product for parallel flows in cotton fibers with ε < 0.85 is about half that cited by Fowler and

Hertel (1940) for packed wads (90 versus 180 or 200 depending on the value of k used for packed wads of fibers)
and would agree with Fowler and Hertel for packed-wad flows where ε → 0.95. The k used by Sullivan is the
inverse of that used by Fowler and Hertel.

Hersh and Walker (1980) revisited the work of Sullivan (1942) and provided a correlation over the range of data
as follows, where the units are in the cgs system (dyne, g, cm, s):

For flow parallel to fibers (0.1 < ε < 0.985)

2
15 74 1

1 27 1 97
2 1 413
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ε εparallel A a

For flow perpendicular to fibers (0.7 < ε < 0.992)
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1 14 75 1 97
2 3 2
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+ −( )[ ] =∆
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ε
ε
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where the latter expression was developed by Davies (1952).
After refitting the data of Sullivan (1942), the Hersh and Walker (1980) form may be re-expressed as

∆ ∆Pd
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
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parallel perpendicular

A
.

. ( )

And the Ergun form follows:

Y X k Y XErgun Ergun parallel Ergun Ergun perpendicular
A( ) = = ( )36

1

3
99( )

Although these expressions generally agree with those presented by Hersh and Walker (1980), an average of the two
forms more closely approximates Sullivan’s (1941) data (see figs. 2 and 3 in Hersh and Walker, 1980). These
modified forms (eqs. (A97) and (A98)) are presented herein as figures 11 and 12.

Note that for parallel flows through cotton fibers the shape factor is 2.5, and for flows though fibers aligned
normal to the flow (Davies, 1952) it is 3. The implication is that flows though fibrous materials (e.g., cotton) aligned
with the flow do not differ significantly from flows through fibrous materials aligned normal to the flow. However,
flows through fibrous materials still have three times the pressure drop as flows along parallel cylindrical materials
when other parameters remain fixed. Sullivan (1941) found that the pressure drop through packed beds with fibers
oriented perpendicular to the flow was double that of flows through parallel fibers.
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Reducing the Hersh-Walker (1980) form to the Ergun (1952) form, noting that Sullivan gives 〈d〉 as follows
from equations (A6) and  (A7), results in
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Substituting, equation (A97) becomes
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For flow parallel to the fibers (0.1 < ε < 0.985):

Y XErgun Ergun A= −( )[ ] + −( )[ ]{ }−35 415 1 1 27 1 1040 587 2 3. ( ).ε ε ε

and, for reference, as ε → 0.27 the quantity in braces approaches 1. Equation (A104) can be represented by
0.75 < ε < 1.

X YErgun Ergun e a( ) = − −( )1 4
1 6 0 7 1 104

/
. . log (A )ε

For flow perpendicular to the fibers (0.6 < ε < 0.992):

Y XErgun Ergun A= −( )[ ] + −( )[ ]{ }−144 1 1 14 75 1 1050 5 2 3ε ε ε. . ( )

Equation (A105) can be represented by 0.75 < ε < 1.

X YErgun Ergun e a( ) = − −( )1 4
2 5 0 8 1 105

/
. . log (A )ε

and for this case the quantity in braces approaching 1 as ε → 0.5 is beyond the region of validity of the relation.
From figures 11 and 12 (replotted figs. 2 and 3 from Hersh and Walker, 1980), the relations appear to be in

good agreement, yet the sensitivity to small changes in ε becomes paramount. Compared with the twisted-tape data
(see table 1) for ε = 0.522 and N = 48 twisted tapes in a cylindrical (parallel) bundle, equation (A104) gives
XErgunYErgun = 58.8, which is nearly 7/3 greater than the data (see eq. (A85)). As the bed porosity approaches that of
a filter or a particulate separator, the XErgunYErgun product is not a constant but depends on the filter porosity, as
noted by Hersh and Walker (1980) and Sullivan (1942).
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Silverman and First (1952) reported data for edge filtration of 0.5-µm dust and a baby-oil smoke generator with
average 0.6-µm particulates. The filtration materials were a variety of felts, flocked papers, and fiberglass media.
They noted that rockwool, silica fiber, or aluminum oxide fiber could be used at high temperatures. For their
correlation

Y XErgun Ergun A= −( )9

4
29 1 1063 1 4ε ε . ( )

Davies (1952) provides a theoretical foundation for several types of particulate separator, such as settling chambers,
conical elutriators, inertial and cyclone separators, jet impingement mechanisms, precipitators, thermal separation
mechanisms, and filters. Data for flow through fibrous materials follow:

Y XErgun Ergun A= ( ) −( ) + −( )[ ]9

4
70 1 1 52 1 1071 5 1 5ε ε ε. . ( )

The Davies (1952) results range up to three times higher than those of Silverman and First (1952) to several times
higher than those of Hersh and Walker (1980).

Using the data in table 1 for 48 twisted tapes in a cylindrical (parallel) bundle, where ε = 0.522, gives,

X YErgun Ergun A= 58 8 108. ( )from eq. (A104) a

X YErgun Ergun A= 46 6 108. ( )from eq. (A85b) b

For the 48-twisted-tape data prediction

X YErgun Ergun A= + =46 6 58 8

2
52 7 109

. .
. ( )

or less than 1.2 times that of the reported data (table 1 and eqs. (A85)).

Packed Beds of Spheres

Wentz and Thodos (1963) measured the pressure drop across packed (cubic, body centered, and face centered)
and distended bands of five layers of 3.12-cm- (1.23-in.-) diameter spheres held in place by short wires in drilled
holes and epoxy. Spheres in the distended models were separated to simulate bed swelling. Both sets of data were
correlated by

Y
X

XErgun
Ergun
0.05 Ergun < 64 900 (A110)=

−
<0 396

1 2
2550

.

.

which is less than half that of the Ergun equation (A84) but over a larger range of XErgun. As the bed length was
short (five spheres), XErgun dependence may be attributed to as-yet-undeveloped turbulent flow. A problem combin-
ing or extending this relation occurs with the laminar regime because a singularity occurs at XErgun = 38.34.
However,

X Y XErgun Ergun Ergun A= +150 4 5 1110 84. ( ).

is a form that includes this high-XErgun turbulent regime, yet is higher than the Ergun equation (A84) for the
transition region 15 < XErgun < 300 and as much as 14% higher for the region 40 < XErgun < 80 (fig. 13). The
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turbulent-flow pressure drops through these packed beds of spheres have similar XErgun dependence yet are 30 to 40
times larger than for a single twisted tape in a tube over similar ranges in XErgun. The expression

X Y XErgun Ergun Ergun A= +[ ]0 03 150 4 5 1120 84. . ( ).

provides a reasonable fit to the data of Smithberg and Landis (1964) and Koch (1958) in figure 14.

Some Sample Calculations

The basic parameters for 48 twisted tapes in a 2.54-cm- (1.0-in.-) diameter tube are as follows:

Fluid:

ρ = 0.9 g/cm3

µ = 0.9 g/cm-s

Tapes: 〈w〉 and 〈t〉 represent average values of twisted-tape width and twisted-tape thickness measured at each end of
the 48 twisted tapes (table 2).

〈w〉 = w = 0.3234 cm (0.1273 in.)

〈t〉 = t = 0.1275 cm (0.0502 in.)

Do = (w2 + t2)0.5 = 0.348 cm (0.137 in.)

Three full 360° twists in 16.5-cm (6.5-in). length provides an average twist ratio of

H

D
o

o
= =

16 5

3
0 348

15 8

.

.
.

H

Do
= 7 9.

Lo = 16.5 cm

Other parameters: 〈εexp〉 = 0.61 is the average area-weighted porosity (0.593 < εexp < 0.628).

εexp = 0.61

D
D

N t w

D

p =
−( )

+ +( ) = ( )( )( )

+ ( )( ) +





=

3

2
1

1
2

1 5 2 54 0 39

1 2 48
0 1275 0 3234

2 54

0 231
ε

π π

. . .

. .

( . )

. cm

Ao = 



 =2 54

4
5 0672 2. .

π
cm



NASA/TM—2002-208914 29

G

dV

dt
A

dV

dt V Vo
o

= = = × −
ρ 0 9

60
5 067

2 96 10 3

.

.
. ˙ ˙ / minwhere  is in cm3

∆P dP= ×( )6 8947 104. in g / cm – s ,  where  is in psia2 P

X
G D

G G Go p
o o oErgun

2g m s=
−( )

= 





= −
1

0 231

0 39 0 9
0 659

ε µ
.

( . )( . )
. where  is in / c

Y
P

G

D

L

P

G

dP

Go

p

o o o
Ergun =











 −






= = × −ρ ε

ε
∆ ∆

2

3 3

2
4

21

0 9 0 61

0 39

0 231

16 5
73 34 10

( . )( . )

.

.

.
.

Y
Xcalc

Ergun
= +150

1 75.

Data

Date Geometry dV/dt,
cm3/min

DP,
psi

Go,
g/cm2-s

dP,
g/cm-s2

XErgun YErgun Ycalc Ycalc/
YErgun

12-10-98 Borda +
screen

5900 2.54 17.46 17.5¥104 11.5 4.22 14.8 3.51

12-14-98 Orifice +
screen

4754 1.88 14.07 13.0¥104 9.27 4.81 17.9 3.73

12-14-98 Orifice –
screen

6767 2.47 20.0 17.0¥104
13.2 3.12 13.1 4.21

12-14-98 Borda +
screen

6777 2.86 20.0 19.7¥104 13.22 3.6 13.1 3.64

12-19-98 Orifice +
screen

6556 2.48 19.4 17.1¥104 12.79 3.33 13.5 4.04

For all the data (see table 1)

Y

Y
calc

Ergun
= −

+3 6 0 6
0 7. .
. Standard deviation,  0.32

Y XErgun Ergun = −
+45 5

6 Standard deviation,  3.5

For the minimum and maximum twisted-tape thickness and width, from table 2, and the combined data set of
table 1,

·tÒ ·wÒ ·eexpÒ Ycalc/YErgun Standard
deviation

0.1235 cm (0.0486 in.) 0.318 cm (0.1252 in.) 0.6276 3.2 0.28

0.1296 cm (0.051 in.) 0.3287 cm (0.1294 in.) 0.5934 4 0.35
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where 〈εexp〉 is the area-averaged porosity and

39  < YErgunXErgun < 51

However, the data sets for the Borda and orifice with screen and the orifice without screen have distinct flow
characteristics, and more representative values of YErgunXErgun can be determined. For the 48-twisted-tape data of
table 1, the coefficients of the least-squares trend line

log10[YErgun] = A1 log10[XErgun] + B1

through individual data sets are tabulated below, where R2 is the regression coefficent.

Flow configuration A1 B1 R2 Constant ª YErgun XErgun

Average porosity = 0.61

Borda with screena

Orifice with screen
Orifice without screen
Combined data sets

–0.9873
–1.0006
–0.9982
–0.9867

1.6673
1.6436
1.6132
1.6469

0.9965
.9984
.9988
.992

46.5
44.0
41.0
44.4

Minimum porosity = 0.5934

Borda with screena

Orifice with screen
Orifice without screen
Combined data sets

–0.9879
–1.0006
–0.9982
–0.9869

1.6202
1.5958
1.5655
1.5994

0.9964
.9984
.9988
.992

41.7
39.4
36.8
39.8

Maximum porosity = 0.6276

Borda with screena

Orifice with screen
Orifice without screen
Combined data sets

–0.9866
–1.0006
–0.9982
–0.9864

1.7190
1.6961
1.6658
1.699

0.9966
.9984
.9988
.9919

52.4
49.7
46.3
50.0

 
a
One questionable data point set at average of previous and following points in table 1.

Estimates from figure 6 of Smithberg and Landis (1964) for air and water data are

XErgun= 3

2

Re

Y fErgun= 3
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Reynolds number, Re

5000 10 000 20 000 40 000 60 000

XErgun

7500 15 000 30 000 60 000 90 000

f at Ho/D = 3.62 29¥10–3 21¥10–3 15.5¥10–3 13¥10–3 12.5¥10–3

YErgun 87¥10–3 63¥10–3 46.5¥10–3 39¥10–3 37.5¥10–3

f at Ho/D = 4.34 22.5¥10–3 16.5¥10–3 13¥10–3 11¥10–3 9.7¥10–3

YErgun 67.5¥10–3 49.5¥10–3 39¥10–3 33¥10–3 29.1¥10–3

f at Ho/D = 10.3 14¥10–3 11¥10–3 8.5¥10–3 7.4¥10–3 6.8¥10–3

YErgun 42¥10–3 33¥10–3 25.5¥10–3 22.2¥10–3 20.4¥10–3

f at Ho/D = 22 12¥10–3 9.9¥10–3 7.6¥10–3 6.6¥10–3 6¥10–3

YErgun 36¥10–3 29.7¥10–3 22.8¥10–3 19.8¥10–3 18¥10–3

f at Ho/D = • 8¥10–3 7.1¥10–3 6¥10–3 5.35¥10–3 5¥10–3

YErgun 24¥10–3 21.3¥10–3 18¥10–3 16.1¥10–3 15¥10–3

The Smithberg and Landis (1964) data (N = 1) are Reynolds number dependent. It would be interesting to determine
if data for N = 2, 3,..., 48 form parametric families that become more independent of Reynolds number as N in-
creases (see eq. (A55)).

Estimates from Koch (1958) as provided from figure 7 of Smithberg and Landis (1964) are as follows:

Reynolds number, Re

2000 3000 6000 10 000 20 000 30 000 50 000

XErgun

3000 4500 9000 15 000 30 000 45 000 75 000

f at H/D = 5 32.5¥10–3 26.5¥10–3 18¥10–3 14.6¥10–3 11.6¥10–3 10¥10–3 9¥10–3

YErgun 97.5¥10–3 79.5¥10–3 54¥10–3 43.8¥10–3 34.8¥10–3 30¥10–3 27¥10–3

f at H/D = 8.5 21¥10–3 17.5¥10–3 13.2¥10–3 10.9¥10–3 8.6¥10–3 7.5¥10–3 6.4¥10–3

YErgun 63¥10–3 52.5¥10–3 39.6¥10–3 32.7¥10–3 25.8¥10–3 22.5¥10–3 19.2¥10–3

f at H/D = 22 14.2¥10–3 12.3¥10–3 9.7¥10–3 8.5¥10–3 7.1¥10–3 6.4¥10–3 5.7¥10–3

YErgun 42.6¥10–3 36.9¥10–3 29.1¥10–3 25.5¥10–3 21.3¥10–3 19.2¥10–3 17.1¥10–3

f at H/D = • 10¥10–3 9.5¥10–3 8.1¥10–3 7.4¥10–3 6.5¥10–3 5.9¥10–3 5.4¥10–3

YErgun 30¥10–3 28.5¥10–3 24.3¥10–3 22.2¥10–3 19.5¥10–3 17.7¥10–3 16.2¥10–3
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APPENDIX B

SYMBOLS

A flow area

A1 constant

Ao tube cross-sectional area without twisted tape

As surface area or area of sphere

a ratio of wetted surface area to bed volume

av specific surface area, τ/σ
B1 constant

Cf flow coefficient of friction

Co constant relating velocity profiles to radial position

D tape diameter or width (for thin tubes, same as flow tube diameter)

De equivalent diameter

DH hydraulic diameter; characteristic length of packed bed

Di inside diameter

Do virtual diameter of twisted tape

Dp equivalent particle diameter

Dsphere sphere diameter

Dtube flow tube diameter

d fiber diameter

〈d〉 average fiber diameter

eiso subscript denoting equivalent isothermal, eq. (A43)

F(ε) function relating friction to flow direction, eqs. (A97)

f Fanning friction factor, 
D

L

dp dx

u4 0 5 2











/

. ρ

fa no-swirl friction factor, eq. (A43b)

fi friction factor, eq. (A75)

fo Fanning friction factor for tube without twisted tape

fs Darcy swirl (twisted tape) friction factor,  fs = 4f (Darcy f = 4 Fanning f)

G mass flow, ρu

Go mass flux, ρUo = W/Ao

g function defined in eq. (A24)

go function defined in eq. (A23)

g1 function defined in eqs. (A78)

g2 function defined in eq. (A82)
H tape twist through 180° or one-half full wave
Ho tape twist through 360° or one full wave

Jd torsion constant

K entrance pressure loss parameter, eq. (A47)

k packing constant, ko/ζ, eqs. (A86) and (A94)

ko porosity shape parameter, eq. (A94)
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ks surface roughness parameter

L equivalent flow or twisted-tape length; nonideal flow path length

Lo tape length without twist; straight-line distance between pressure taps; bed or tube length

M number much greater than unity

m exponent, eq. (A42)

m1 number much less than unity

N number of twisted tapes in tube

n exponent, eqs. (A21) and (A43)

nt number of 2π twists

P pressure, experimental

p pressure, calculated

R outer radius

Rh ratio of bed cross section available for flow to wetted perimeter

Re Reynolds number, ρuD/µ
Ree equivalent Reynolds number

Rei Reynolds number, eq. (A75)

r radial position

ro outer “wall” radius

S wetted perimeter; surface area of fibrous specimen

So surface area, eq. (A101)

t tape thickness

〈t〉 average twisted-tape thickness

U bulk average axial velocity

Ue equivalent fluid velocity

Uo empty or unpacked-bed velocity

u velocity, general or vector; superficial velocity

ubar average velocity

V bed volume

V̇ volumetric flow rate

Vs volume of sphere

Vsolid volume of solid in porous bed

Vtotal total bed volume (solid plus void)

v flow velocity in fibrous specimen

vθ circumferential velocity; tangential fluid velocity

vo velocity at ro

vt tangential velocity

W mass flow rate

w twisted-tape width

〈w〉 average twisted-tape width

XErgun Ergun Reynolds number parameter, GoDp/(1 – ε)µ
Xn pressure drop data parameter

x axial position

Ycalc calculated Ergun parameter
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YErgun Ergun friction factor parameter, ρ ε ε∆P G D Lo p o/ / /2 3 1( ) −( )[ ]( )
Yn flow data parameter

y number of tube diameters per 180° of twist (also used as coordinate, fig. 2(e))

Z analytical axial locus

Zo equivalent axial distance without twist

z axial coordinate

α, φ, χ polar coordinate parameters, fig. 2(e)

δ surface roughness

γo bulk density parameter, eq. (A86)

ε bed porosity parameter

εexp experimental bed porosity

εmodel modeled bed porosity

κ torsion parameter, eq. (A71)

ρ average fluid density

µ viscosity

ν
µ
ρ  kinematic velocity

ϕ analytical twist parameter

φ angle between interface normal and microscopic flow

τ/σ surface-to-volume parameter, eq. (A86)

τ thickness of fibrous specimen

σ deviation

ζ porosity parameter, eq. (A94)
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TABLE 1.—FLOW AND PRESSURE DROP DATA AND ANALYSIS FOR 48 TWISTED TAPES IN CYLINDRICAL TUBE

V̇ ,
cm3/min

∆P,
psi

Go,
g/cm2–s

dP,
g/cm–s2

XErgun =
0.659Go

YErgun =
73.34×10–4

dP/Go
2

Ycalc =
150/XErgun+

1.75

Ycalc/YErgun σ1 XErgunYErgun σ2

a
8218 3.55 24.33 244762 15.28 1.81 11.57 6.38 0.0039 27.69 3.42
7657 3.29 22.66 226836 14.23 1.94 12.29 6.35 0.0009 27.54 2.89
5900 2.54 17.46 175125 10.97 2.52 15.43 6.13 0.0356 27.60 3.08
4730 2.07 14.00 142720 8.79 3.19 18.81 5.90 0.1799 28.05 4.89
3881 1.67 11.49 115141 7.21 3.82 22.54 5.90 0.1797 27.58 3.03
2804 1.11 8.30 76531 5.21 4.87 30.53 6.27 0.0024 25.37 0.22
2790 1.14 8.26 78600 5.19 5.05 30.67 6.07 0.0606 26.19 0.12
1546 0.59 4.58 40679 2.87 8.51 53.95 6.34 0.0003 24.46 1.90
1272 0.47 3.77 32405 2.36 10.02 65.19 6.51 0.0353 23.68 4.65
b
957 0.31 2.83 21374 1.78 11.67 86.07 7.37 1.1111 20.76 25.77
975 0.37 2.89 25510 1.81 13.42 84.51 6.30 0.0005 24.32 2.30

1518 0.63 4.49 43437 2.82 9.43 54.91 5.82 0.2458 26.60 0.58
2014 0.87 5.96 59984 3.74 7.40 41.82 5.65 0.4437 27.69 3.42
2713 1.13 8.03 77910 5.04 5.29 31.49 5.95 0.1377 26.70 0.74
3538 1.59 10.47 109626 6.58 4.38 24.56 5.61 0.5088 28.81 8.80
4307 1.94 12.75 133757 8.01 3.61 20.49 5.68 0.4088 28.87 9.19
5260 2.33 15.57 160647 9.78 2.90 17.09 5.89 0.1888 28.39 6.52
6129 2.67 18.14 184088 11.39 2.45 14.92 6.09 0.0548 27.92 4.34
7151 3.09 21.17 213046 13.29 2.08 13.03 6.26 0.0041 27.70 3.45
8207 3.49 24.29 240625 15.26 1.79 11.58 6.48 0.0264 27.26 2.01
6354 2.73 18.81 188225 11.81 2.33 14.45 6.20 0.0151 27.54 2.89
4435 1.92 13.13 132378 8.24 3.37 19.94 5.93 0.1557 27.75 3.65
2471 1.02 7.31 70326 4.59 5.76 34.41 5.97 0.1205 26.46 0.38

c
1592 0.686 4.71 47298 2.96 9.33 52.44 5.62 0.4925 27.62 3.17
2721 1.174 8.05 80944 5.06 5.47 31.41 5.74 0.3320 27.66 3.30
4349 1.866 12.87 128655 8.08 3.40 20.30 5.97 0.1236 27.50 2.76
4311 1.84 12.76 126862 8.01 3.41 20.47 6.00 0.1054 27.36 2.31
6112 2.58 18.09 177883 11.36 2.38 14.95 6.28 0.0017 27.06 1.48
8045 3.37 23.81 232351 14.95 1.80 11.78 6.56 0.0581 26.85 1.02
7193 2.96 21.29 204083 13.37 1.97 12.97 6.57 0.0644 26.38 0.29
6057 2.49 17.93 171678 11.26 2.34 15.07 6.44 0.0144 26.35 0.26
4993 2.04 14.78 140652 9.28 2.82 17.91 6.35 0.0008 26.19 0.12
3459 1.41 10.24 97215 6.43 4.06 25.08 6.17 0.0221 26.13 0.08
2298 1.04 6.80 71705 4.27 6.79 36.86 5.43 0.7948 29.01 10.04
1526 0.64 4.52 44126 2.84 9.48 54.63 5.76 0.3087 26.88 1.09
958 0.39 2.84 26889 1.78 14.65 85.98 5.87 0.2045 26.09 0.06
446 0.2 1.32 13789 0.83 34.67 182.68 5.27 1.1047 28.74 8.43

d
5859 2.52 17.34 173746 10.89 2.53 15.52 6.13 0.0353 27.57 2.99
8156 3.48 24.14 239936 15.16 1.80 11.64 6.45 0.0181 27.35 2.28
6777 2.86 20.06 197188 12.60 2.15 13.66 6.36 0.0016 27.05 1.47

aBorda + screen (12/10/98).
bQuestionable.
cBorda + screen (12/12/98).
dBorda + screen (12/14/98).
eOrifice + screen (12/14/98; reverse of Borda + screen) .
fOrifice without screen (12/14/98; reverse of Borda without screen).
gOrifice without screen (12/19/98; reverse of Borda without screen).
hN–1 points.
iN points.
jThrow out one point.
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TABLE 1.—CONCLUDED.

V̇ ,
cm3/min

∆P,
psi

Go,
g/cm2–s

dP,
g/cm–s2

XErgun =
0.659Go

YErgun =
73.34×10–4

dP/Go
2

Ycalc =
150/XErgun+

1.75

Ycalc/YErgun σ1 XErgunYErgun σ2

4546 1.9 13.46 130999 8.45 3.17 19.50 6.15 0.0285 26.79 0.90
2367 1 7.01 68947 4.40 6.15 35.84 5.82 0.2466 27.08 1.54
1768 0.75 5.23 51710 3.29 8.27 47.39 5.73 0.3505 27.19 1.83
1245 0.55 3.69 37921 2.31 12.24 66.56 5.44 0.7740 28.32 6.13
833 0.36 2.47 24821 1.55 17.89 98.62 5.51 0.6519 27.70 3.47
718 0.32 2.13 22063 1.33 21.40 114.14 5.33 0.9753 28.57 7.44

e
982 0.35 2.91 24131 1.83 12.52 83.92 6.71 0.1487 22.85 8.97

2239 0.88 6.63 60673 4.16 6.05 37.79 6.24 0.0059 25.19 0.42
4754 1.88 14.07 129620 8.84 2.87 18.72 6.53 0.0431 25.35 0.24
8239 3.27 24.39 225457 15.32 1.66 11.54 6.95 0.3964 25.44 0.16
7030 2.76 20.81 190294 13.07 1.93 13.23 6.87 0.3017 25.17 0.46
4265 1.65 12.62 113763 7.93 3.13 20.67 6.61 0.0832 24.80 1.09
2000 0.77 5.92 53089 3.72 6.64 42.10 6.34 0.0005 24.68 1.35
1072 0.42 3.17 28958 1.99 12.60 77.02 6.11 0.0434 25.11 0.53
722 0.28 2.14 19305 1.34 18.52 113.51 6.13 0.0366 24.86 0.96
452 0.19 1.34 13100 0.84 32.07 180.28 5.62 0.4877 26.94 1.22

f
1297 0.47 3.84 32405 2.41 9.63 63.97 6.64 0.1020 23.23 6.82
3303 1.19 9.78 82047 6.14 3.76 26.18 6.96 0.4104 23.09 7.54
5038 1.83 14.91 126173 9.37 2.49 17.77 7.15 0.6827 23.28 6.54
6767 2.47 20.03 170299 12.58 1.86 13.67 7.35 1.0651 23.40 5.97
8412 3.08 24.90 212357 15.64 1.50 11.34 7.56 1.5308 23.47 5.62
7619 2.76 22.55 190294 14.16 1.64 12.34 7.53 1.4576 23.22 6.87
6019 2.15 17.82 148236 11.19 2.05 15.16 7.41 1.1803 22.90 8.67
4100 1.45 12.14 99973 7.62 2.97 21.43 7.21 0.7837 22.67 10.06
2003 0.704 5.93 48539 3.72 6.05 42.04 6.95 0.3935 22.53 10.96
1002 0.34 2.97 23442 1.86 11.68 82.28 7.05 0.5276 21.75 16.73
868 0.31 2.57 21374 1.61 14.19 94.72 6.68 0.1265 22.89 8.69
556 0.208 1.65 14341 1.03 23.20 146.88 6.33 0.0001 23.98 3.46

g
1013 0.389 3.00 26820 1.88 13.07 81.41 6.23 0.0085 24.61 1.50
3095 1.17 9.16 80668 5.75 4.21 27.82 6.61 0.0817 24.23 2.59
6556 2.485 19.41 171333 12.19 1.99 14.06 7.05 0.5352 24.30 2.38
8239 3.123 24.39 215321 15.32 1.59 11.54 7.28 0.9154 24.30 2.38
5000 1.851 14.80 127621 9.29 2.55 17.89 7.01 0.4715 23.73 4.46
1700 0.621 5.03 42816 3.16 7.41 49.22 6.64 0.1039 23.42 5.88
743 0.281 2.20 19374 1.38 17.55 110.36 6.29 0.0011 24.24 2.55

#N/A 474.00 22.56 1938.03 295.77
6.32 0.3048 25.84 h4.00

0.3007 i3.94
j3.648663

aBorda + screen (12/10/98).
bQuestionable.
cBorda + screen (12/12/98).
dBorda + screen (12/14/98).
eOrifice + screen (12/14/98; reverse of Borda + screen) .
fOrifice without screen (12/14/98; reverse of Borda without screen).
gOrifice without screen (12/19/98; reverse of Borda without screen).
hN–1 points.
iN points.
jThrow out one point.
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TABLE 2.—TWISTED-TAPE WIDTH ·wÒ AND THICKNESS ·tÒ MEASUREMENTS

FOR 48 TWISTED TAPES
a

[Sorted in ascending order (estimated).]

Left-end measurements Right-end measurementsTape

Thickness,
·tÒ,
in.

Width,
·wÒ,
in.

A= wt,

in.
2

A= wt,

in.
2

Thickness,
·tÒ,
in.

Width,
·wÒ,
in.

1 0.038 0.129 0.004902 0.004514 0.037 0.122

2 .038 .124 .004712 .004674 .038 .123

3 .038 .123 .004674 .004636 .038 .122

4 .039 .122 .004758 .004674 .038 .123

5 .039 .123 .004797 .005265 .039 .135

6 .039 .125 .004875 .004797 .039 .123

7 .04 .129 .00516 .00488 .04 .122

8 .04 .124 .00496 .00492 .04 .123

9 .041 .126 .005166 .005002 .041 .122

10 .042 .118 .004956 .005453 .041 .133

11 .124 .005208 .00504 .042 .12

12 .118 .004956 .005418 .129

13 .129 .005418 .005292 .126

14 .128 .005376 .005208 .124

15 .124 .005208 .004914 .117

16 .128 .005376 .005504 .043 .128

17 .043 .121 .005203 .005192 .044 .118

18 .043 .121 .005203 .00528 .044 .12

19 .043 .119 .005117 .005324 .044 .121

20 .044 .119 .005236 .005715 .045 .127

21 .047 .123 .005781 .00611 .047 .13

22 .048 .145 .00696 .0066 .05 .132

23 .049 .13 .00637 .0067 .05 .134

24 .05 .124 .0062 .0064 .05 .128

25 .051 .125 .006375 .006528 .051 .128

26 .052 .124 .006448 .0065 .052 .125

27 .128 .006656 .006916 .133

28 .123 .006396 .006552 .126

29 .126 .006552 .0065 .125

30 .125 .0065 .007182 .133

31 .125 .0065 .00767 .059 .13

32 .124 .006448 .00944 .059 .16

33 .125 .0065 .007847 .059 .133

34 .053 .126 .006678 .008296 .061 .136

35 .053 .125 .006625 .008235 .135

36 .054 .127 .006858 .007503 .123

37 .123 .006642 .007747 .127

38 .126 .006804 .007936 .062 .128

39 .123 .006642 .008618 .062 .139

40 .125 .00675 .008866 .062 .143
a
Average porosity, 0.6105. Corresponding average t (in.) = 0.0502 and w (in.) = 0.1273.
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Figure 1.—Single twisted tapes. (From Smithberg and
   Landis, 1964.)

TABLE 2.—CONCLUDED.

Left-end measurements Right-end measurementsTape

Thickness,
·tÒ,
in.

Width,
·wÒ,
in.

A= wt,

in.
2

A= wt,

in.
2

Thickness,
·tÒ,
in.

Width,
·wÒ,
in.

41 0.055 0.132 0.00726 0.008253 0.063 0.131

42 .055 .126 .00693 .008064 .063 .128

43 .057 .125 .007125 .009009 .063 .143

44 .061 .127 .007747 .00896 .064 .14

45 .061 .132 .008052 .00896 .064 .14

46 .062 .118 .007316 .008704 .064 .136

47 .062 .126 .007812 .00871 .065 .134

48 .065 .128 .00832 .008844 .066 .134

Totals 2.334 6.01 0.292508 0.319352 2.45 6.212

Average 0.04862 0.12521 0.05104 0.12942

Porosity 0.6276 0.5934
a
Average porosity, 0.6105. Corresponding average t (in.) = 0.0502 and w (in.) = 0.1273.
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Figure 2.—Configurations of packed bed of twisted tapes. (a) Typical twisted-tape assembly. (b) Cross
   section (end view). (c) Ideal packed bed in soccer ball configuration. (d) Test section. (e) Test section
   screen. (f) Twisted tapes. (g) Prismatic bar model.
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Figure 3.—Behavior for single twisted tape and 48 twisted tapes in packed bed relative to
   Ergun model for laminar and turbulent-flow data.

N = 48, orifice/screen
S-L, Ho/D = 10.3
Koch, Ho/D = 8.5
Date, y = 3.14
Date, y = 2.25
G-B, y = 11

N = 48, Borda/screen
S-L, Ho/D = 4.34
Koch, Ho/D = 5
Date, y = 2.25
Date, �
G-B, y = 1.12
Single twisted tape

N = 48, orifice/no screen
S-L, Ho/D = 22
Koch, Ho/D = 22
Date, y = 5.24
G-B, y = 0.28
Ergun, XErgunYErgun = 150 + 1.75XErgun
S-L, Ho/D = 3.62
S-L, Ho/D = �
Koch, Ho/D = �
Date, y = 15.72
G-B, y = 0.56
N = 48 twisted-tape model

Ergun model

Single-twisted-
tape model

48-twisted-tape model



NASA/TM—2002-208914 48

10–2

10–1

100

103 104 105

Ergun Reynolds number, XErgun

Figure 4.—Swirl velocity ratio correction (eq. (11)) applied to turbulent data.
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Figure 7.—Transverse flow field at one diameter from packed-bed inlet.
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Figure 8.—Laminar flow behavior for single twisted tape and packed bed of 48 twisted
   tapes.
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Figure 10.—Behavior of single twisted tape and packed bed of 48 twisted tapes relative to
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Figure 11.—Modified fit of Sullivan data (1942). (From fig. 2 of Hersh and Walker, 1980.)
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Figure 13.—Dependence of Ergun model including packed-sphere, turbulent-flow data of
   Wentz and Thodos (1963).
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